Good Place. Good Things. Good Time.

Subduction Zone Earthquakes: Fast and Slow, Weak and Strong

Subduction Zone Earthquakes: Fast and Slow, Weak and Strong

The onset of geodesy and seismic monitoring has produced a richer picture of slip in subduction zones that includes not only megathrust earthquakes, but also variations of slow slip events of different sizes and durations. Slow slip events can rival large earthquakes in terms of cumulative moment. Many of these slow slip events occur in the transition zone between the shallow brittle and deeper ductile regimes. Behr et al. [2021] model this transition as a narrow zone of strong clasts embedded within a ductile matrix, as has been observed in outcrops of exhumed subduction zones (as shown in the figure above). The authors simulate slip while systematically varying strength contrasts and relative proportions of weak and strong material. They find three slip modes that result from these variations: aseismic slip with no earthquakes, slow-slip, and regular earthquakes, which mirror observations from subduction zones as well as what is observed geologically in exhumed subduction zones.

Citation: Behr, W., Gerya, T., Cannizzari, C. & Blass, R. [2021]. Transient Slow Slip Characteristics of Frictional-Viscous Subduction Megathrust Shear Zones. AGU Advances, 2, e2021AV000416. https://doi.org/10.1029/2021AV000416

—Tom Parsons, Editor, AGU Advances

Search more articles here: Subduction Zone Earthquakes: Fast and Slow, Weak and Strong

Read original article here: Subduction Zone Earthquakes: Fast and Slow, Weak and Strong



Disclaimers and Denial of responsibility..!

Denial of responsibility! TheTopMag.com is an automatic aggregator of all media around the world. In each content, the hyperlink to the primary source is specified. All trademarks belong to their rightful owners, all materials to their authors. If you are the owner of the content and do not want us to publish your materials, please contact us by email – jamesonline999@gmail.com . The content will be deleted within 72 hours.
You might also like
Leave A Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.